Exploit This

Security News, Exploits, and Vulnerabilities.

Schroedinger’s Pet(ya)

Earlier today (June 27th), we received reports about a new wave of ransomware attacks spreading around the world, primarily targeting businesses in Ukraine, Russia and Western Europe. Our investigation is ongoing and our findings are far from final at this time. Despite rampant public speculation, the following is what we can confirm from our independent analysis.

Neutrino modification for POS-terminals

From time to time authors of effective and long-lived Trojans and viruses create new modifications and forks of them, like any other software authors. One of the brightest examples amongst them is Zeus, which continues to spawn new modifications of itself each year.

KSN Report: Ransomware in 2016-2017

In early 2017, Kaspersky Lab’s researchers have discovered an emerging and dangerous trend: more and more cybercriminals are turning their attention from attacks against private users to targeted ransomware attacks against businesses.

Ztorg: from rooting to SMS

I’ve been monitoring Google Play Store for new Ztorg Trojans since September 2016, and have so far found several dozen new malicious apps. All of them were rooting malware that used exploits to gain root rights on the infected device. In May 2017, a new Ztorg variant appeared on the Google Play Store – only this this time it wasn’t a rooting malware but a Trojan-SMS.

Honeypots and the Internet of Things

According to Gartner, there are currently over 6 billion IoT devices on the planet. Such a huge number of potentially vulnerable gadgets could not possibly go unnoticed by cybercriminals. As of May 2017, Kaspersky Lab’s collections included several thousand different malware samples for IoT devices, about half of which were detected in 2017.

Nigerian phishing: Industrial companies under attack

In late 2016, the Kaspersky Lab Industrial Control Systems Cyber Emergency Response Team reported on phishing attacks that were primarily targeting industrial companies from the metallurgy, electric power, construction, engineering and other sectors. As further research demonstrated, this was just part of a bigger story that began much earlier and is unlikely to end any time soon.

TA17-164A: HIDDEN COBRA – North Korea’s DDoS Botnet Infrastructure

Original release date: June 13, 2017

Systems Affected

Networked Systems


This joint Technical Alert (TA) is the result of analytic efforts between the Department of Homeland Security (DHS) and the Federal Bureau of Investigation (FBI). This alert provides technical details on the tools and infrastructure used by cyber actors of the North Korean government to target the media, aerospace, financial, and critical infrastructure sectors in the United States and globally. Working with U.S. Government partners, DHS and FBI identified Internet Protocol (IP) addresses associated with a malware variant, known as DeltaCharlie, used to manage North Korea’s distributed denial-of-service (DDoS) botnet infrastructure. This alert contains indicators of compromise (IOCs), malware descriptions, network signatures, and host-based rules to help network defenders detect activity conducted by the North Korean government. The U.S. Government refers to the malicious cyber activity by the North Korean government as HIDDEN COBRA.

If users or administrators detect the custom tools indicative of HIDDEN COBRA, these tools should be immediately flagged, reported to the DHS National Cybersecurity Communications and Integration Center (NCCIC) or the FBI Cyber Watch (CyWatch), and given highest priority for enhanced mitigation. This alert identifies IP addresses linked to systems infected with DeltaCharlie malware and provides descriptions of the malware and associated malware signatures. DHS and FBI are distributing these IP addresses to enable network defense activities and reduce exposure to the DDoS command-and-control network. FBI has high confidence that HIDDEN COBRA actors are using the IP addresses for further network exploitation.

This alert includes technical indicators related to specific North Korean government cyber operations and provides suggested response actions to those indicators, recommended mitigation techniques, and information on reporting incidents to the U.S. Government.

For a downloadable copy of IOCs, see:


Since 2009, HIDDEN COBRA actors have leveraged their capabilities to target and compromise a range of victims; some intrusions have resulted in the exfiltration of data while others have been disruptive in nature. Commercial reporting has referred to this activity as Lazarus Group[1] and Guardians of Peace.[2] DHS and FBI assess that HIDDEN COBRA actors will continue to use cyber operations to advance their government’s military and strategic objectives. Cyber analysts are encouraged to review the information provided in this alert to detect signs of malicious network activity.

Tools and capabilities used by HIDDEN COBRA actors include DDoS botnets, keyloggers, remote access tools (RATs), and wiper malware. Variants of malware and tools used by HIDDEN COBRA actors include Destover,[3] Wild Positron/Duuzer,[4] and Hangman.[5] DHS has previously released Alert TA14-353A,[6] which contains additional details on the use of a server message block (SMB) worm tool employed by these actors. Further research is needed to understand the full breadth of this group’s cyber capabilities. In particular, DHS recommends that more research should be conducted on the North Korean cyber activity that has been reported by cybersecurity and threat research firms.

HIDDEN COBRA actors commonly target systems running older, unsupported versions of Microsoft operating systems. The multiple vulnerabilities in these older systems provide cyber actors many targets for exploitation. These actors have also used Adobe Flash player vulnerabilities to gain initial entry into users’ environments.

HIDDEN COBRA is known to use vulnerabilities affecting various applications. These vulnerabilities include:

  • CVE-2015-6585: Hangul Word Processor Vulnerability
  • CVE-2015-8651: Adobe Flash Player and 19.x Vulnerability
  • CVE-2016-0034: Microsoft Silverlight 5.1.41212.0 Vulnerability
  • CVE-2016-1019: Adobe Flash Player Vulnerability
  • CVE-2016-4117: Adobe Flash Player Vulnerability

We recommend that organizations upgrade these applications to the latest version and patch level. If Adobe Flash or Microsoft Silverlight is no longer required, we recommend that those applications be removed from systems.

The indicators provided with this alert include IP addresses determined to be part of the HIDDEN COBRA botnet infrastructure, identified as DeltaCharlie. The DeltaCharlie DDoS bot was originally reported by Novetta in their 2016 Operation Blockbuster Malware Report. This malware has used the IP addresses identified in the accompanying .csv and .stix files as both source and destination IPs. In some instances, the malware may have been present on victims’ networks for a significant period.

Technical Details

DeltaCharlie is a DDoS tool used by HIDDEN COBRA actors, and is referenced and detailed in Novetta’s Operation Blockbuster Destructive Malware report. The information related to DeltaCharlie from the Operation Blockbuster Destructive Malware report should be viewed in conjunction with the IP addresses listed in the .csv and .stix files provided within this alert. DeltaCharlie is a DDoS tool capable of launching Domain Name System (DNS) attacks, Network Time Protocol (NTP) attacks, and Character Generation Protocol attacks. The malware operates on victims’ systems as a svchost-based service and is capable of downloading executables, changing its own configuration, updating its own binaries, terminating its own processes, and activating and terminating denial-of-service attacks. Further details on the malware can be found in Novetta’s report available at the following URL:


Detection and Response

HIDDEN COBRA IOCs related to DeltaCharlie are provided within the accompanying .csv and .stix files of this alert. DHS and FBI recommend that network administrators review the IP addresses, file hashes, network signatures, and YARA rules provided, and add the IPs to their watchlist to determine whether malicious activity has been observed within their organization.

When reviewing network perimeter logs for the IP addresses, organizations may find numerous instances of these IP addresses attempting to connect to their systems. Upon reviewing the traffic from these IP addresses, system owners may find that some traffic corresponds to malicious activity and some to legitimate activity. System owners are also advised to run the YARA tool on any system they suspect to have been targeted by HIDDEN COBRA actors. Additionally, the appendices of this report provide network signatures to aid in the detection and mitigation of HIDDEN COBRA activity.

Network Signatures and Host-Based Rules

This section contains network signatures and host-based rules that can be used to detect malicious activity associated with HIDDEN COBRA actors. Although created using a comprehensive vetting process, the possibility of false positives always remains. These signatures and rules should be used to supplement analysis and should not be used as a sole source of attributing this activity to HIDDEN COBRA actors.

Network Signatures

alert tcp any any -> any any (msg:”DPRK_HIDDEN_COBRA_DDoS_HANDSHAKE_SUCCESS”; dsize:6; flow:established,to_server; content:”|18 17 e9 e9 e9 e9|”; fast_pattern:only; sid:1; rev:1;)


alert tcp any any -> any any (msg:”DPRK_HIDDEN_COBRA_Botnet_C2_Host_Beacon”; flow:established,to_server; content:”|1b 17 e9 e9 e9 e9|”; depth:6; fast_pattern; sid:1; rev:1;)


YARA Rules


$rsaKey = {7B 4E 1E A7 E9 3F 36 4C DE F4 F0 99 C4 D9 B7 94

A1 FF F2 97 D3 91 13 9D C0 12 02 E4 4C BB 6C 77

48 EE 6F 4B 9B 53 60 98 45 A5 28 65 8A 0B F8 39

73 D7 1A 44 13 B3 6A BB 61 44 AF 31 47 E7 87 C2

AE 7A A7 2C 3A D9 5C 2E 42 1A A6 78 FE 2C AD ED

39 3F FA D0 AD 3D D9 C5 3D 28 EF 3D 67 B1 E0 68

3F 58 A0 19 27 CC 27 C9 E8 D8 1E 7E EE 91 DD 13

B3 47 EF 57 1A CA FF 9A 60 E0 64 08 AA E2 92 D0}

condition: any of them”



$STR1 = “Wating” wide ascii

$STR2 = “Reamin” wide ascii

$STR3 = “laptos” wide ascii

condition: (uint16(0) == 0x5A4D or uint16(0) == 0xCFD0 or uint16(0) == 0xC3D4 or uint32(0) == 0x46445025 or uint32(1) == 0x6674725C) and 2 of them}”



$randomUrlBuilder = { 83 EC 48 53 55 56 57 8B 3D ?? ?? ?? ?? 33 C0 C7 44 24 28 B4 6F 41 00 C7 44 24 2C B0 6F 41 00 C7 44 24 30 AC 6F 41 00 C7 44 24 34 A8 6F 41 00 C7 44 24 38 A4 6F 41 00 C7 44 24 3C A0 6F 41 00 C7 44 24 40 9C 6F 41 00 C7 44 24 44 94 6F 41 00 C7 44 24 48 8C 6F 41 00 C7 44 24 4C 88 6F 41 00 C7 44 24 50 80 6F 41 00 89 44 24 54 C7 44 24 10 7C 6F 41 00 C7 44 24 14 78 6F 41 00 C7 44 24 18 74 6F 41 00 C7 44 24 1C 70 6F 41 00 C7 44 24 20 6C 6F 41 00 89 44 24 24 FF D7 99 B9 0B 00 00 00 F7 F9 8B 74 94 28 BA 9C 6F 41 00 66 8B 06 66 3B 02 74 34 8B FE 83 C9 FF 33 C0 8B 54 24 60 F2 AE 8B 6C 24 5C A1 ?? ?? ?? ?? F7 D1 49 89 45 00 8B FE 33 C0 8D 5C 11 05 83 C9 FF 03 DD F2 AE F7 D1 49 8B FE 8B D1 EB 78 FF D7 99 B9 05 00 00 00 8B 6C 24 5C F7 F9 83 C9 FF 33 C0 8B 74 94 10 8B 54 24 60 8B FE F2 AE F7 D1 49 BF 60 6F 41 00 8B D9 83 C9 FF F2 AE F7 D1 8B C2 49 03 C3 8B FE 8D 5C 01 05 8B 0D ?? ?? ?? ?? 89 4D 00 83 C9 FF 33 C0 03 DD F2 AE F7 D1 49 8D 7C 2A 05 8B D1 C1 E9 02 F3 A5 8B CA 83 E1 03 F3 A4 BF 60 6F 41 00 83 C9 FF F2 AE F7 D1 49 BE 60 6F 41 00 8B D1 8B FE 83 C9 FF 33 C0 F2 AE F7 D1 49 8B FB 2B F9 8B CA 8B C1 C1 E9 02 F3 A5 8B C8 83 E1 03 F3 A4 8B 7C 24 60 8D 75 04 57 56 E8 ?? ?? ?? ?? 83 C4 08 C6 04 3E 2E 8B C5 C6 03 00 5F 5E 5D 5B 83 C4 48 C3 }

condition: $randomUrlBuilder”




A successful network intrusion can have severe impacts, particularly if the compromise becomes public and sensitive information is exposed. Possible impacts include:

  • temporary or permanent loss of sensitive or proprietary information,
  • disruption to regular operations,
  • financial losses incurred to restore systems and files, and
  • potential harm to an organization’s reputation.


Mitigation Strategies

Network administrators are encouraged to apply the following recommendations, which can prevent as many as 85 percent of targeted cyber intrusions. The mitigation strategies provided may seem like common sense. However, many organizations fail to use these basic security measures, leaving their systems open to compromise:

  1. Patch applications and operating systems – Most attackers target vulnerable applications and operating systems. Ensuring that applications and operating systems are patched with the latest updates greatly reduces the number of exploitable entry points available to an attacker. Use best practices when updating software and patches by only downloading updates from authenticated vendor sites.
  2. Use application whitelisting – Whitelisting is one of the best security strategies because it allows only specified programs to run while blocking all others, including malicious software.
  3. Restrict administrative privileges – Threat actors are increasingly focused on gaining control of legitimate credentials, especially credentials associated with highly privileged accounts. Reduce privileges to only those needed for a user’s duties. Separate administrators into privilege tiers with limited access to other tiers.
  4. Segment networks and segregate them into security zones – Segment networks into logical enclaves and restrict host-to-host communications paths. This helps protect sensitive information and critical services, and limits damage from network perimeter breaches.
  5. Validate input – Input validation is a method of sanitizing untrusted input provided by users of a web application. Implementing input validation can protect against the security flaws of web applications by significantly reducing the probability of successful exploitation. Types of attacks possibly averted include Structured Query Language (SQL) injection, cross-site scripting, and command injection.
  6. Use stringent file reputation settings – Tune the file reputation systems of your anti-virus software to the most aggressive setting possible. Some anti-virus products can limit execution to only the highest reputation files, stopping a wide range of untrustworthy code from gaining control.
  7. Understand firewalls – Firewalls provide security to make your network less susceptible to attack. They can be configured to block data and applications from certain locations (IP whitelisting), while allowing relevant and necessary data through.

Response to Unauthorized Network Access

Enforce your security incident response and business continuity plan. It may take time for your organization’s IT professionals to isolate and remove threats to your systems and restore normal operations. Meanwhile, you should take steps to maintain your organization’s essential functions according to your business continuity plan. Organizations should maintain and regularly test backup plans, disaster recovery plans, and business continuity procedures.

Contact DHS or your local FBI office immediately. To report an intrusion and request resources for incident response or technical assistant, you are encouraged to contact DHS NCCIC ([email protected] or 888-282-0870), the FBI through a local field office, or the FBI’s Cyber Division ([email protected] or 855-292-3937).

Protect Against SQL Injection and Other Attacks on Web Services

To protect against code injections and other attacks, system operators should routinely evaluate known and published vulnerabilities, periodically perform software updates and technology refreshes, and audit external-facing systems for known web application vulnerabilities. They should also take the following steps to harden both web applications and the servers hosting them to reduce the risk of network intrusion via this vector.

  • Use and configure available firewalls to block attacks.
  • Take steps to secure Windows systems, such as installing and configuring Microsoft’s Enhanced Mitigation Experience Toolkit (EMET) and Microsoft AppLocker.
  • Monitor and remove any unauthorized code present in any www directories.
  • Disable, discontinue, or disallow the use of Internet Control Message Protocol (ICMP) and Simple Network Management Protocol (SNMP) as much as possible.
  • Remove unnecessary HTTP verbs from web servers. Typical web servers and applications only require GET, POST, and HEAD.
  • Where possible, minimize server fingerprinting by configuring web servers to avoid responding with banners identifying the server software and version number.
  • Secure both the operating system and the application.
  • Update and patch production servers regularly.
  • Disable potentially harmful SQL-stored procedure calls.
  • Sanitize and validate input to ensure that it is properly typed and does not contain escaped code.
  • Consider using type-safe stored procedures and prepared statements.
  • Audit transaction logs regularly for suspicious activity.
  • Perform penetration testing on web services.
  • Ensure error messages are generic and do not expose too much information.

Permissions, Privileges, and Access Controls

System operators should take the following steps to limit permissions, privileges, and access controls.

  • Reduce privileges to only those needed for a user’s duties.
  • Restrict users’ ability (permissions) to install and run unwanted software applications, and apply the principle of “Least Privilege” to all systems and services. Restricting these privileges may prevent malware from running or limit its capability to spread through the network.
  • Carefully consider the risks before granting administrative rights to users on their own machines.
  • Scrub and verify all administrator accounts regularly.
  • Configure Group Policy to restrict all users to only one login session, where possible.
  • Enforce secure network authentication, where possible.
  • Instruct administrators to use non-privileged accounts for standard functions such as web browsing or checking webmail.
  • Segment networks into logical enclaves and restrict host-to-host communication paths. Containment provided by enclaving also makes incident cleanup significantly less costly.
  • Configure firewalls to disallow Remote Desktop Protocol (RDP) traffic coming from outside of the network boundary, except for in specific configurations such as when tunneled through a secondary virtual private network (VPN) with lower privileges.
  • Audit existing firewall rules and close all ports that are not explicitly needed for business. Specifically, carefully consider which ports should be connecting outbound versus inbound.
  • Enforce a strict lockout policy for network users and closely monitor logs for failed login activity. Failed login activity can be indicative of failed intrusion activity.
  • If remote access between zones is an unavoidable business need, log and monitor these connections closely.
  • In environments with a high risk of interception or intrusion, organizations should consider supplementing password authentication with other forms of authentication such as challenge/response or multifactor authentication using biometric or physical tokens.

Logging Practices

System operators should follow these secure logging practices.

  • Ensure event logging, including applications, events, login activities, and security attributes, is turned on or monitored for identification of security issues.
  • Configure network logs to provide adequate information to assist in quickly developing an accurate determination of a security incident.
  • Upgrade PowerShell to new versions with enhanced logging features and monitor the logs to detect usage of PowerShell commands, which are often malware-related.
  • Secure logs in a centralized location and protect them from modification.
  • Prepare an incident response plan that can be rapidly administered in case of a cyber intrusion.



Revision History

  • June 13, 2017: Initial Release

This product is provided subject to this Notification and this Privacy & Use policy.

TA17-163A: CrashOverride Malware

Original release date: June 12, 2017

Systems Affected

Industrial Controls Systems


The National Cybersecurity and Communications Integration Center (NCCIC) is aware of public reports from ESET and Dragos outlining a new, highly capable Industrial Controls Systems (ICS) attack platform that was reportedly used in 2016 against critical infrastructure in Ukraine. As reported by ESET and Dragos, the CrashOverride malware is an extensible platform that could be used to target critical infrastructure sectors. NCCIC is working with its partners to validate the ESET and Dragos analysis, and develop a better understanding of the risk this new malware poses to the U.S. critical infrastructure.

Although this activity is still under investigation, NCCIC is sharing this report to provide organizations with detection and mitigation recommendations to help prevent future compromises within their critical infrastructure networks. NCCIC continues to work with interagency and international partners on this activity and will provide updates as information becomes available.

For a downloadable copy of listings of IOCs, see:

To report activity related to this Incident Report Alert, please contact NCCIC at [email protected] or 1-888-282-0870.

Risk Evaluation

NCCIC Cyber Incident Scoring System (NCISS) Rating Priority Level (Color)
Yellow (Medium)
A medium priority incident may affect public health or safety, national security, economic security, foreign relations, civil liberties, or public confidence.


There is no evidence to suggest this malware has affected U.S. critical infrastructure; however, the tactics, techniques, and procedures (TTPs) described as part of the CrashOverride malware could be modified to target U.S. critical information networks and systems.


Technical Analysis

CrashOverride malware represents a scalable, capable platform. The modules and capabilities publically reported appear to focus on organizations using ICS protocols IEC101, IEC104, and IEC61850, which are more commonly used outside the United States in electric power control systems. The platform fundamentally abuses a targeted ICS system’s legitimate control systems functionality to achieve its intended effect. While the known capabilities do not appear to be U.S.-focused, it is more important to recognized that the general TTPs used in CrashOverride could be leveraged with modified technical implementations to affect U.S.-based critical infrastructure. With further modification, CrashOverride or similar malware could have implications beyond electric power so all critical infrastructure organizations should be evaluating their systems to susceptibilities in the TTPs outlined. The malware has several reported capabilities:

  1. Issues valid commands directly to remote terminal units (RTUs) over ICS protocols. As reported by Dragos, one such command sequence toggles circuit breakers in a rapid open-close-open-close pattern. This could create conditions where individual utilities may island from infected parties, potentially resulting in a degradation of grid reliability.
  2. Denies service to local serial COM ports on windows devices, therefore preventing legitimate communications with field equipment over serial from the affected device.
  3. Scans and maps ICS environment using a variety of protocols, including Open Platform Communications (OPC). This significantly improves the payload’s probability of success.
  4. Could exploit Siemens relay denial-of-service (DoS) vulnerability, leading to a shutdown of the relay. In this instance, the relay would need to be manually reset to restore functionality.
  5. Includes a wiper module in the platform that renders windows systems inert, requiring a rebuild or backup restoration.


As CrashOverride is a second stage malware capability and has the ability to operate independent of initial C2, traditional methods of detection may not be sufficient to detect infections prior to the malware executing. As a result, organizations are encouraged to implement behavioral analysis techniques to attempt to identify pre-courser activity to CrashOverride. As additional information becomes available on stage one infection vectors and TTPs, this alert will be updated.

NCCIC is providing a compilation of indicators of compromise (IOCs) from a variety of sources to aid in the detection of this malware in the appendices. The sources provided do not constitute an exhaustive list and the U.S. Government does not endorse or support any particular product or vendor’s information referenced in this report. However, NCCIC has included this data to ensure wide distribution of the most comprehensive information available and will provide updates as warranted.


import “pe”
import “hash”

rule dragos_crashoverride_exporting_dlls
description = “CRASHOVERRIDE v1 Suspicious Export”
author = “Dragos Inc”
pe.exports(“Crash”) & pe.characteristics

rule dragos_crashoverride_suspcious
description = “CRASHOVERRIDE v1 Wiper”
author = “Dragos Inc”
$s0 = “SYS_BASCON.COM” fullword nocase wide
$s1 = “.pcmp” fullword nocase wide
$s2 = “.pcmi” fullword nocase wide
$s3 = “.pcmt” fullword nocase wide
$s4 = “.cin” fullword nocase wide
pe.exports(“Crash”) and any of ($s*)

rule dragos_crashoverride_name_search {
description = “CRASHOVERRIDE v1 Suspicious Strings and Export”
author = “Dragos Inc”
$s0 = “101.dll” fullword nocase wide
$s1 = “Crash101.dll” fullword nocase wide
$s2 = “104.dll” fullword nocase wide
$s3 = “Crash104.dll” fullword nocase wide
$s4 = “61850.dll” fullword nocase wide
$s5 = “Crash61850.dll” fullword nocase wide
$s6 = “OPCClientDemo.dll” fullword nocase wide
$s7 = “OPC” fullword nocase wide
$s8 = “CrashOPCClientDemo.dll” fullword nocase wide
$s9 = “D2MultiCommService.exe” fullword nocase wide
$s10 = “CrashD2MultiCommService.exe” fullword nocase wide
$s11 = “61850.exe” fullword nocase wide
$s12 = “OPC.exe” fullword nocase wide
$s13 = “haslo.exe” fullword nocase wide
$s14 = “haslo.dat” fullword nocase wide
any of ($s*) and pe.exports(“Crash”)

rule dragos_crashoverride_hashes {
description = “CRASHOVERRIDE Malware Hashes”
author = “Dragos Inc”

filesize < 1MB and
hash.sha1(0, filesize) == “f6c21f8189ced6ae150f9ef2e82a3a57843b587d” or
hash.sha1(0, filesize) == “cccce62996d578b984984426a024d9b250237533” or
hash.sha1(0, filesize) == “8e39eca1e48240c01ee570631ae8f0c9a9637187” or
hash.sha1(0, filesize) == “2cb8230281b86fa944d3043ae906016c8b5984d9” or
hash.sha1(0, filesize) == “79ca89711cdaedb16b0ccccfdcfbd6aa7e57120a” or
hash.sha1(0, filesize) == “94488f214b165512d2fc0438a581f5c9e3bd4d4c” or
hash.sha1(0, filesize) == “5a5fafbc3fec8d36fd57b075ebf34119ba3bff04” or
hash.sha1(0, filesize) == “b92149f046f00bb69de329b8457d32c24726ee00” or
hash.sha1(0, filesize) == “b335163e6eb854df5e08e85026b2c3518891eda8”

rule dragos_crashoverride_moduleStrings {
description = “IEC-104 Interaction Module Program Strings”
author = “Dragos Inc”
$s1 = “IEC-104 client: ip=%s; port=%s; ASDU=%u” nocase wide ascii
$s2 = “ MSTR ->> SLV” nocase wide ascii
$s3 = “ MSTR <<- SLV” nocase wide ascii
$s4 = “Unknown APDU format !!!” nocase wide ascii
$s5 = “iec104.log” nocase wide ascii
any of ($s*)

rule dragos_crashoverride_configReader
description = “CRASHOVERRIDE v1 Config File Parsing”
author = “Dragos Inc”
$s0 = { 68 e8 ?? ?? ?? 6a 00 e8 a3 ?? ?? ?? 8b f8 83 c4 ?8 }
$s1 = { 8a 10 3a 11 75 ?? 84 d2 74 12 }
$s2 = { 33 c0 eb ?? 1b c0 83 c8 ?? }
$s3 = { 85 c0 75 ?? 8d 95 ?? ?? ?? ?? 8b cf ?? ?? }
all of them

rule dragos_crashoverride_configReader
description = “CRASHOVERRIDE v1 Config File Parsing”
author = “Dragos Inc”
$s0 = { 68 e8 ?? ?? ?? 6a 00 e8 a3 ?? ?? ?? 8b f8 83 c4 ?8 }
$s1 = { 8a 10 3a 11 75 ?? 84 d2 74 12 }
$s2 = { 33 c0 eb ?? 1b c0 83 c8 ?? }
$s3 = { 85 c0 75 ?? 8d 95 ?? ?? ?? ?? 8b cf ?? ?? }
all of them

rule dragos_crashoverride_weirdMutex
description = “Blank mutex creation assoicated with CRASHOVERRIDE”
author = “Dragos Inc”
$s1 = { 81 ec 08 02 00 00 57 33 ff 57 57 57 ff 15 ?? ?? 40 00 a3 ?? ?? ?? 00 85 c0 }
$s2 = { 8d 85 ?? ?? ?? ff 50 57 57 6a 2e 57 ff 15 ?? ?? ?? 00 68 ?? ?? 40 00}
all of them

rule dragos_crashoverride_serviceStomper
description = “Identify service hollowing and persistence setting”
author = “Dragos Inc”
$s0 = { 33 c9 51 51 51 51 51 51 ?? ?? ?? }
$s1 = { 6a ff 6a ff 6a ff 50 ff 15 24 ?? 40 00 ff ?? ?? ff 15 20 ?? 40 00 }
all of them

rule dragos_crashoverride_wiperModuleRegistry
description = “Registry Wiper functionality assoicated with CRASHOVERRIDE”
author = “Dragos Inc”
$s0 = { 8d 85 a0 ?? ?? ?? 46 50 8d 85 a0 ?? ?? ?? 68 68 0d ?? ?? 50 }
$s1 = { 6a 02 68 78 0b ?? ?? 6a 02 50 68 b4 0d ?? ?? ff b5 98 ?? ?? ?? ff 15 04 ?? ?? ?? }
$s2 = { 68 00 02 00 00 8d 85 a0 ?? ?? ?? 50 56 ff b5 9c ?? ?? ?? ff 15 00 ?? ?? ?? 85 c0 }
all of them

rule dragos_crashoverride_wiperFileManipulation
description = “File manipulation actions associated with CRASHOVERRIDE wip¬er”
author = “Dragos Inc”
$s0 = { 6a 00 68 80 00 00 00 6a 03 6a 00 6a 02 8b f9 68 00 00 00 40 57 ff 15 1c ?? ?? ?? 8b d8 }
$s2 = { 6a 00 50 57 56 53 ff 15 4c ?? ?? ?? 56 }
all of them


A successful network intrusion can have severe impacts, particularly if the compromise becomes public and sensitive information is exposed. Possible impacts include:

  • temporary or permanent loss of sensitive or proprietary information,
  • disruption to regular operations,
  • financial losses incurred to restore systems and files, and
  • potential harm to an organization’s reputation.


Properly implemented defensive techniques and common cyber hygiene practices increase the complexity of barriers that adversaries must overcome to gain unauthorized access to critical information networks and systems. In addition, malicious network activity should trigger detection and prevention mechanisms that enable organizations to contain and respond to intrusions more rapidly. There is no set of defensive techniques or programs that will completely avert all attacks however, layered cybersecurity defenses will aid in reducing an organization’s attack surface and will increase the likelihood of detection. This layered mitigation approach is known as defense-in-depth.
NCCIC has based its mitigations and recommendations on its analysis of the public reporting of this malware and will be provide updates as more information becomes available.
Critical infrastructure companies should to ensure that they are following best practices, which are detailed in such as those outlined in the Seven Steps to Effectively Defend Industrial Control Systems document produced jointly by DHS, NSA, and FBI.

Application Whitelisting

Application whitelisting (AWL) can detect and prevent attempted execution of malware uploaded by adversaries. Application whitelisting hardens operating systems and prevents the execution of unauthorized software. The static nature of some systems, such as database servers and human-machine interface (HMI) computers make these ideal candidates to run AWL. NCCIC encourages operators to work with their vendors to baseline and calibrate AWL deployments.
Operators may choose to implement directory whitelisting rather than trying to list every possible permutation of applications in an environment. Operators may implement application or application directory whitelisting through Microsoft Software Restriction Policy (SRP), AppLocker, or similar application whitelisting software. Safe defaults allow applications to run from PROGRAMFILES, PROGRAMFILES(X86), SYSTEM32, and any ICS software folders. All other locations should be disallowed unless an exception is granted.

Manage Authentication and Authorization

This malware exploits the lack of authentication and authorization in common ICS protocols to issue unauthorized commands to field devices. Asset owners/operators should implement authentication and authorization protocols to ensure field devices verify the authenticity of commands before they are actioned. In some instances, legacy hardware may not be capable of implementing these protections. In these cases, asset owners can either leverage ICS firewalls to do stateful inspection and authentication of commands, or upgrade their control field devices.

Adversaries are increasingly focused on gaining control of legitimate credentials, especially those associated with highly privileged accounts. Compromising these credentials allows adversaries to masquerade as legitimate users, leaving less evidence of compromise than more traditional attack options (i.e., exploiting vulnerabilities or uploading malware). For this reason, operators should implement multi-factor authentication where possible and reduce privileges to only those needed for a user’s duties. If passwords are necessary, operators should implement secure password policies, stressing length over complexity. For all accounts, including system and non-interactive accounts, operators should ensure credentials are unique, and changed, at a minimum, every 90 days.

NCCIC also recommends that operators require separate credentials for corporate and control network zones and store them in separate trust stores. Operators should never share Active Directory, RSA ACE servers, or other trust stores between corporate and control networks. Specifically, operators should:

  • Decrease a threat actor’s ability to access key network resources by implementing the principle of least privilege;
  • Limit the ability of a local administrator account to login from a local interactive session (e.g., “Deny access to this computer from the network”) and prevent access via a remote desktop protocol session;
  • Remove unnecessary accounts, groups, and restrict root access;
  • Control and limit local administration; and
  • Make use of the Protected Users Active Directory group in Windows Domains to further secure privileged user accounts against pass-the-hash attacks.

Handling Destructive Malware

Destructive malware continues to be a threat to both critical infrastructure and business systems. NCCIC encourages organizations to review the ICS-CERT destructive malware white paper for detailed mitigation guidance. It is important for organizations to maintain backups of key data, systems, and configurations such as:

  • Server gold images;
  • ICS Workstation gold configurations;
  • Engineering workstation images;
  • PLC/RTU configurations;
  • Passwords and configuration information; and
  • Offline copies of install media for operating systems and control applications.

Ensure Proper Configuration/Patch Management

Adversaries often target unpatched systems. A configuration/patch management program centered on the safe importation and implementation of trusted patches will help render control systems more secure.

Such a program will start with an accurate baseline and asset inventory to track what patches are needed. The program will prioritize patching and configuration management of “PC-architecture” machines used in HMI, database server, and engineering workstation roles, as current adversaries have significant cyber capabilities against these systems. Infected laptops are a significant malware vector. Such a program will limit the connection of external laptops to the control network and ideally supply vendors with known-good company laptops. The program will also encourage initial installation of any updates onto a test system that includes malware detection features before the updates are installed on operational systems.

NCCIC recommends operators to:

  • Use best practices when downloading software and patches destined for their control network;
  • Take measures to avoid watering hole attacks;
  • Use a web Domain Name System (DNS) reputation system;
  • Obtain and apply updates from authenticated vendor sites;
  • Validate the authenticity of downloads;
  • Insist that vendors digitally sign updates, and/or publish hashes via an out-of-bound communications path, and only use this path to authenticate; and
  • Never load updates from unverified sources.
    • Reduce your attack surface area
    • To the greatest extent possible, NCCIC recommends operators:
  • Isolate ICS networks from any untrusted networks, especially the Internet;
  • Lock down all unused ports;
  • Turn off all unused services; and
  • Only allow real-time connectivity to external networks if there is a defined business requirement or control function.
    • If one-way communication can accomplish a task, operators should use optical separation (“data diode”).
    • If bidirectional communication is necessary, operators should use a single open port over a restricted network path.

Build a Defendable Environment

Building a defendable environment will help limit the impact from network perimeter breaches. NCCIC recommends operators segment networks into logical enclaves and restrict host-to-host communications paths. This can prevent adversaries from expanding their access, while allowing the normal system communications to continue operating. Enclaving limits possible damage, as threat actors cannot use compromised systems to reach and contaminate systems in other enclaves. Containment provided by enclaving also makes incident cleanup significantly less costly.

If one-way data transfer from a secure zone to a less secure zone is required, operators should consider using approved removable media instead of a network connection. If real-time data transfer is required, operators should consider using optical separation technologies. This allows replication of data without placing the control system at risk.

Additional details on effective strategies for building a defendable ICS network can be found in the ICS-CERT Defense-in-Depth Recommended Practice.

Implement Secure Remote Access

Some adversaries are effective at gaining remote access into control systems, finding obscure access vectors, even “hidden back doors” intentionally created by system operators. Operators should remove such accesses wherever possible, especially modems, as these are fundamentally insecure.
Operators should:

  • Limit any accesses that remain;
  • Where possible, implement “monitoring only” access enforced by data diodes, and not rely on “read only” access enforced by software configurations or permissions;
  • Not allow remote persistent vendor connections into the control network;
  • Require any remote access to be operator controlled, time limited, and procedurally similar to “lock out, tag out;
  • Use the same remote access paths for vendor and employee connections; do not allow double standards; and
  • Use two-factor authentication if possible, avoiding schemes where both tokens are similar and can be easily stolen (e.g., password and soft certificate).

Monitor and Respond

Defending a network against modern threats requires actively monitoring for adversarial penetration and quickly executing a prepared response. Operators should

  • Consider establishing monitoring programs in the following key places: at the internet boundary; at the business to Control DMZ boundary; at the Control DMZ to control LAN boundary; and inside the Control LAN;
  • Watch IP traffic on ICS boundaries for abnormal or suspicious communications;
  • Monitor IP traffic within the control network for malicious connections or content;
  • Use host-based products to detect malicious software and attack attempts;
    • Use login analysis (time and place for example) to detect stolen credential usage or improper access, verifying all anomalies with quick phone calls;
    • Watch account/user administration actions to detect access control manipulation; and
  • Have a response plan for when adversarial activity is detected.
    • Such a plan may include disconnecting all Internet connections, running a properly scoped search for malware, disabling affected user accounts, isolating suspect systems, and immediately resetting 100 percent of passwords.
    • Such a plan may also define escalation triggers and actions, including incident response, investigation, and public affairs activities.
  • Have a restoration plan, including “gold disks” ready to restore systems to known good states.


Revision History

  • July 12, 2017: Initial Release

This product is provided subject to this Notification and this Privacy & Use policy.

Two Tickets as Bait

Over the previous weekend, social networks were hit with a wave of posts that falsely claimed that major airlines were giving away tickets for free. Users from all over the world became involved in this: they published posts that mentioned Emirates, Air France, Aeroflot, S7 Airline, Eva Air, Turkish Airlines, Air Asia, Air India, and other companies.

SambaCry is coming

Not long ago, news appeared online of a younger sibling for the sensational vulnerability EternalBlue. The story was about a new vulnerability for *nix-based systems – EternalRed (aka SambaCry). On May 30th our honeypots captured the first attack to make use of this particular vulnerability, but the payload in this exploit had nothing in common with the Trojan-Crypt that was EternalBlue and WannaCry.

%d bloggers like this: